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SUMMARY

The Navier–Stokes equations written in Laplace form are often the starting point of many numerical
methods for the simulation of viscous flows. Imposing the natural boundary conditions of the Laplace
form or neglecting the viscous contributions on free surfaces are traditionally considered reasonable and
harmless assumptions. With these boundary conditions any formulation derived from integral methods
(like finite elements or finite volumes) recovers the pure Laplacian aspect of the strong form of the
equations. This approach has also the advantage of being convenient in terms of computational effort
and, as a consequence, it is used extensively. However, we have recently discovered that these resulting
Laplacian formulations violate a basic axiom of continuum mechanics: the principle of objectivity. In the
present article we give an accurate account about these topics. We also show that unexpected differences
may sometimes arise between Laplace discretizations and divergence discretizations. Copyright q 2007
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1. INTRODUCTION

The incompressible Navier–Stokes (N–S) equations under the approximation of a nearly constant
viscosity is probably the most known and one of the most used equation of fluid mechanics.
Starting from the equation of conservation of momentum, the N–S equations may be written as the
divergence of the Cauchy stress plus the external forces equal to the inertial terms. Nevertheless,
taking into account the equation of conservation of mass and supposing that the viscosity is constant
or nearly constant, it turns out that the divergence of the Cauchy stress can be simply written as
the Laplacian of the velocity field times the viscosity. For this reason, this last form is named
the Laplace form of the N–S equations. This form is exactly equivalent to the original divergence
form for all cases of incompressible flows with constant viscosity.

The Laplace form is, most of the time, the form in which the N–S equations are presented
in the literature, probably because of historical reasons, since its simple form allows to obtain
some analytical solutions and probably also for the fact that the three components of the velocity
field appear uncoupled being only coupled by the pressure terms. This latter advantage is taken
into account in some iterative solution methods, for instance projection methods or fractional step
methods, in which each velocity component may be solved separately at each iteration with a large
improvement in the computing time and memory.

In the development of modern approaches based on integral/weak forms such as finite elements
and finite volumes, a careful analysis shows that the Laplace form introduces some additional
boundary terms. This is not a problem per se, as long as one manages to incorporate these
additional terms into the formulation. Nevertheless, it has become a common practice to introduce
seemingly small and reasonable approximations on the boundary so as to neglect these additional
terms. The resulting formulation has better property in that the Laplacian nature of the stress terms
in the strong form is preserved in the weak form.

Although a number of stabilized fractional-step formulations for different velocity–pressure
interpolations were proposed based on the divergence form (see, for example, [1–3]), the Laplace
form is what we see most of the time in fractional-step algorithms. Similarly, the Laplace form is
what we see most often in pressure-projection methods.

However, Limache and Idelsohn [4] have recently discovered that these Laplacian formulations
introduce an error which results in the violation of a main axiom of continuum mechanics: the
principle of objectivity. In this article, we will extend the theoretical results presented in [4] and
for the first time we will show some of the effects of this violation on real numerical simulations.

2. NAVIER–STOKES EQUATIONS IN DIVERGENCE FORM

The equations of conservation of mass and conservation of momentum in strong form of an
incompressible fluid material are given by

∇ · v= 0 (1)

�
�v
�t

+ �(∇v) · v= ∇ · r (2)

In the above equations v is the velocity vector, � the density, ∇ ·r is the divergence of the Cauchy
stress tensor r and we have assumed that there are no external body forces.
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For the particular case of incompressible Newtonian fluids, the Cauchy stress is given by,

r=−pI + �∇v + �(∇v)T (3)

where p is the fluid’s pressure, I is the Identity Tensor and � the viscosity. Replacing this relationship
into Equation (2) we get the divergence form of the N–S equations

�
�v
�t

+ �(∇v) · v=∇ · r= ∇ · (−pI + �∇v + �(∇v)T) (4)

∇ · v= 0 (5)

3. NAVIER–STOKES EQUATIONS IN LAPLACE FORM

Making use of the following tensor identities:

∇ · (pI) = ∇ p (6)

∇ · (∇V) =∇2v (7)

∇ · (∇v)T = ∇(∇ · v) (8)

and assuming that the spatial variation of the viscosity can be neglected, it turns out that the ∇ · r
simplifies to

∇ · r=∇ · (−pI + �∇v)=−∇ p + �∇2v (9)

Replacing this into the right-hand side (RHS) of Equation (4), we get an alternative expression for
the N–S equations: the Incompressible N–S equations in Laplace form

�
�v
�t

+ �∇v · v=−∇ p + �∇2v (10)

∇ · v= 0 (11)

We call it the Laplace form of the N–S equations because the viscous contribution is simply the
Laplacian of the velocity components

∇2v

Note that both the strong forms, the Laplace form and the Divergence form, are equivalent
(under the constant viscosity approximation) and that the (∇v)T term does not contribute to the
momentum equations because

∇ · (∇v)T = 0

for incompressible fluids.
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642 A. LIMACHE ET AL.

4. BOUNDARY CONDITIONS OF NAVIER–STOKES EQUATIONS

In general the fluid moves around and between solid surfaces �v and traction surfaces �t where
suitable boundary conditions have to be prescribed. The set of exact boundary conditions will be
presented next.

4.1. Boundary conditions at solid boundaries

At solid boundaries �v which may be moving with arbitrary velocity v̄, the flow velocity is imposed

v= v̄ on �v (12)

4.2. Boundary conditions at traction surfaces

There are many problems of practical importance where flows are not fully bounded and then
have traction surfaces. On traction surfaces, external forces are present but the fluid’s motion is
not imposed. Consequently, part of the problem consists in determining the position and shape
of these surfaces. Examples of traction surfaces are all the cases where there exists interaction
between two fluids, this includes multi-phase flows.

At traction surfaces �t where arbitrary external forces t̄ are acting, the condition of continuity
of forces must hold. So denoting by n the outward pointing surface’s unit normals, the following
boundary condition must hold:

r · n= t̄ on �t (13)

Then, for Newtonian fluids

−pn + �(∇v) · n + �(∇v)T · n= t̄ on �t (14)

4.3. Boundary conditions at free-surfaces

Free-surface flows are a special case of multi-phase flows. They are essentially two-phase flows,
usually a liquid phase and a gas phase, where one usually neglects the density and viscous effects
of the lighter phase. For a deeper discussion on the subject refer to [5] . Examples of free-surface
flows are sea waves, dam breaks, flow over structures, flow around ships, mould filling, flow with
bubbles, etc.

The exact free-surface boundary conditions of free-surface flows are obtained as a special case
of the general interface condition (13), assuming that external tangential forces are negligible and
that only external normal pressures are applied. In such case and in the absence of surface tension,
we can write the imposed external forces simply as

t̄=− p̄n (15)

where p̄ is an imposed known external pressure, such as the atmospheric pressure. Replacing (15)
into the traction boundary condition (13) we get

r · n= − p̄n (16)

Then, for Newtonian fluids

−pn + �(∇v) · n + �(∇v)T · n= −pn on �t (17)

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:639–664
DOI: 10.1002/fld
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Observation 1
It is important to note then that in general the internal pressure does not match the imposed external
pressure p̄ on the free surface.

If we consider a two-dimensional flow and decompose the traction forces and the velocity vector
in a tangential and a normal component

v= vtet + vnen no sum

The exact boundary condition (14) becomes

t̄nen + t̄tet =−pen + �
�vt

�xn
et + �

�vn

�xn
en + �

�vn

�xn
en + �

�vn

�xt
et no sum (18)

Separating in components

t̄n =−p + 2�
�vn

�xn
no sum (19)

t̄t = �
�vt

�xn
+ �

�vn

�xt
no sum (20)

In case, only normal loads are applied

− p̄=−p + 2�
�vn

�xn
no sum (21)

0= �
�vt

�xn
+ �

�vn

�xt
no sum (22)

From (21)–(22) we see that even in 2D pressures do not match.

4.4. Inviscid approximations

For many practical applications (such as the ones involving liquids with free surfaces), it is
a common assumption (see [6, p. 3429; 7, Chapter 1]) that the viscous terms in the RHS of
Equations (14) and (17) are negligible

�(∇v) · n ≈ 0 and �(∇v)T · n ≈ 0 on �t (23)

This seems reasonable because one expects the velocity gradients in the fluid to be small on the free
surface. Under this inviscid assumption, the internal pressure p matches the external pressure p̄
(say the atmospheric pressure)

p= p̄ on �t (24)

The matching of internal and external pressures is a classical assumption, see, for example,
[8–14], etc.
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4.5. Pseudo-tractions approximations

In their book, Donea and Huerta [15] mention an alternative approach for boundary conditions.
The idea is to use a seemingly less restrictive approximation than the inviscid approximation, i.e.
to neglect just the second viscous term of the LHS of Equations (14) and (17):

�(∇v)T · n ≈ 0 on �t (25)

Under this assumption the traction boundary condition (14) becomes

−pn + �(∇v) · n=−pn + �(n · ∇)v = t̄ on �t (26)

They call this boundary condition the pseudo-traction boundary condition.
Note that the pseudo-traction condition (26) does not necessarily imply that the internal pressure

should match the imposed external pressure p̄ on the free surface. Effectively for the case of free
surfaces (26) becomes

−pn + �(∇v) · n=− p̄n on �t (27)

and then

p �= p̄ on �t (28)

unless also

�(∇v) · n ≈ 0 on �t (29)

From this it follows that the inviscid assumption is equivalent to assume the pseudo-traction
condition plus the condition of matching external pressure.

5. DIVERGENCE WEAK FORM OF NAVIER–STOKES EQUATIONS

Nowadays most people solve the N–S equations, not by discretization of the strong forms (Equations
(10)–(11) or Equations (4)–(5)) presented in Sections 2 and 3, but by discretization of a weak
form of the differential equations. The most popular methods to get such weak form are the finite-
element method (FEM) and the finite-volume method (FVM). In the present paper we will assume
that we are interested in solving the N–S equations using a FEM formulation. However, the results
are not restricted to FEM. Similar implications are obtained for FVM.

In this section we will derive the weak form of the N–S equations when they are written in
divergence form (i.e. Equations (4)–(5)). For the sake of simplicity we will call it the divergence
weak form of the N–S equations or just the divergence weak form.

5.1. Divergence weak form

To find the weak form of the Equations (4)–(5) we proceed as it is usual in FEM [16]. We multiply
both sides of Equation (4) by a weighting function w and integrate over the whole fluid domain
� to get ∫

�
w�

�v
�t

d� +
∫

�
w�(∇v) · v d�=

∫
�

w∇ · r d� (30)
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Integration by parts of the divergence terms leads to∫
�

w∇ · [r] d�=−
∫

�
[r] · ∇w d� +

∫
�

w[r] · n d� (31)

So we get

∫
�

w�
�v
�t

d� +
∫

�
w�(∇v) · v d�

=−
∫

�
[−pI + �∇v + �(∇v)T] · ∇w d� +

∫
�t

wr · n d� (32)

where we have used also that

w = 0 on �v (33)

Observation 2
Note that the integrand of the boundary integral in the momentum equation (32) is exactly the
physical traction condition (13). This means that the traction condition is the natural boundary
condition of the N–S equations written in divergence form.

Since we have got the natural boundary condition on the boundary integral, it is straightforward
to impose the boundary conditions (13). Then, for the general traction problem we have

∫
�

w�
�v
�t

d� +
∫

�
w�(∇v) · v d�

=
∫

�
p∇w d� −

∫
�

�∇v · ∇w d� −
∫

�
�(∇v)T · ∇w d� +

∫
�t

wt d� (34)

Note that there are not unknowns in the boundary integral. For the particular case of free surfaces
we get

∫
�

w�
�v
�t

d� +
∫

�
w�(∇v) · v d�

=
∫

�
p∇w d� −

∫
�

�∇v · ∇w d� −
∫

�
�(∇v)T · ∇w d� −

∫
�t

w p̄n d� (35)

We can perform a similar approach for the continuity equation with a weighting function q
to get: ∫

�
q∇ · v d�= 0 (36)

Equations (34) or (35) supplemented with Equation (36) are what we called the divergence weak
form of the N–S equations.
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5.2. Divergence discretization (FEM)

With the divergence weak form expressions (35)–(36) for free surfaces in our hands we can obtain
the divergence discretization using standard FEM procedures [16].

If we identify the following discrete operators in Equation (35):

∫
�

w�
�v
�t

d� +
∫

�
w�(∇v) · v d�= M

�v
�t

+ C(v) (37)

∫
�
p∇w d� −

∫
�

�∇v · ∇w d� −
∫

�
�(∇v)T · ∇w d� −

∫
�t

w p̄n d�

=−Gp + �Lv + �Tv + F (38)

and in Equation (36) as: ∫
�

w�(∇v) · vd� = D(v) (39)

We can use different forms of the discrete operators to get different numerical schemes. For
example, a fully implicit (see [17]) scheme at time (n + 1) will look like

⎡
⎣Mvn+1 + �tC(vn+1) + �tGpn+1 − �t�(L + T)vn+1

Dvn+1

⎤
⎦ =

[
Mvn + �tF

0

]
(40)

Similarly, if we use (see [18]) a second–order Crank–Nicholson for the diffusive terms and the
convective terms are updated using a second-order Adams–Bashforth method our discrete system
of equations will look something like

⎡
⎢⎣M − �t�

2
(L + T) �tG

D 0

⎤
⎥⎦

⎡
⎣ vn+1

pn+1

⎤
⎦

=
⎡
⎢⎣−�t

(
3

2
C(vn) − 1

2
C(vn−1)

)
+ �t�

2
(L + T)vn + Mvn + �tF

0

⎤
⎥⎦ (41)

It is worth to make the following observations:

Observation 3
The operator

K = L + T (42)

is the stiffness matrix of linear elasticity.
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Observation 4
The operator

Tv

produces a full coupling of velocity components.

6. LAPLACE WEAK FORMS OF NAVIER–STOKES EQUATIONS

In this section we will derive the weak form of the N–S equations when written in Laplace form
(i.e. Equations (10)–(11)). We proceed in a similar way as done for the divergence form. Since
both forms are supposed to be equivalent we expect to get the same results.

6.1. Exact Laplace weak form

Multiplying both sides of Equation (10) by the weighting function w and integrating over the
whole fluid domain � we get∫

�
w�

�v
�t

d� +
∫

�
w�(∇v) · v d�=

∫
�

w[−∇ p + �∇2v] d� (43)

After integration by parts of the pressure term and the Laplacian term, we get that∫
�

w�
�v
�t

d� +
∫

�
w�(∇v) · v d�

=
∫

�
p∇w d� −

∫
�

�∇v · ∇w d� +
∫

�t

w[−pI + �∇v] · n d� (44)

Observation 5
As opposed to what we might have expected, in Equation (44) we do not get back in the boundary
integral the exact traction condition. This means that the physical boundary condition is not the
natural boundary condition of the N–S equations written in Laplace Form. If we look carefully,
we can see that the natural boundary conditions of the Laplace form of the N–S equations are
actually the pseudo-tractions conditions presented in Equation (26).

Some of the issues related to the boundary conditions associated with the divergence and Laplace
forms were addressed in [19, 20].

In order to be completely accurate we should be careful in not to replace the integrand of the
boundary integral by r · n, instead we should make use of the relationship (14)

t̄ − �(∇v)T · n= [−pI + �∇v] · n on �t (45)

Replacing Equation (45) in the boundary integral of Equation (44), we see that the Laplace weak
form of the N–S equations is∫

�
w�

�v
�t

d� +
∫

�
w�(∇v) · v d�

=
∫

�
p∇w d� −

∫
�

�∇v · ∇w d� +
∫

�t

wt d� −
∫

�t

w[�(∇v)T] · n d� (46)
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supplemented with the weak form of the incompressibility condition (36). In particular, for free
surfaces we have∫

�
w�

�v
�t

d� +
∫

�
w�(∇v) · v d�

=
∫

�
p∇w d� −

∫
�

�∇v · ∇w d� −
∫

�t

w p̄n d� −
∫

�t

w[�(∇v)T] · n d� (47)

6.2. Exact Laplace discretization

If we define the discrete operator V as

Vv = −
∫

�t

w[�(∇v)T] · n d� (48)

we can get the Laplace discretizations of the N–S equations that are the counterpart the divergence
discretization Equations (40) and (41). The exact fully implicit Laplace scheme at time (n + 1)
that corresponds to (40) is[

Mvn+1 + �tC(vn+1) + �tGpn+1 − �t�(L + V)vn+1

Dvn+1

]
=

[
Mvn + �tF

0

]
(49)

Similarly, the semi-implicit second-order case that corresponds to (41) is⎡
⎣M − �t�

2
(L + V) �tG

D 0

⎤
⎦

[
vn+1

pn+1

]

=
⎡
⎢⎣−�t

(
3

2
C(vn) − 1

2
C(vn−1)

)
+ �t�

2
(L + V)vn + Mvn + �tF

0

⎤
⎥⎦ (50)

Observation 6
Note that exact Laplace discretizations and divergence discretizations are similar. They would be
identical if the discrete operators Tv and Vv would be equal. This is the case in the continuum
because from the identity∫

�
w∇(∇ · v) d�=−

∫
�
(∇v)T · ∇w d� +

∫
�

w(∇v)T · n d� (51)

and the incompressibility condition, it follows that

−
∫

�
(∇v)T · ∇w d�=−

∫
�

w(∇v)T · n d� (52)

Then

Tv= Vv in the continuum (53)
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However, in a real discretization one should be careful to state a strict equality because T in-
volves volume integration while V involves contributions of boundary elements, and because the
incompressibility condition is satisfied weakly. So in general

Tv �= Vv in the discrete (54)

7. STANDARD LAPLACE WEAK FORMS

In our previous derivations we did not make any approximation (except of course the assumption
of negligible spatial variation of the viscosity). Usually the use of approximations are convenient,
for example, so as to increase performance and reduce complexity without loosing accuracy.
One traditional way of obtaining helpful approximations for simulations of viscous flows is the
one that combines the Laplace weak form derived in the previous section with the ‘reasonable’
approximations on the boundary conditions described in Sections 4.4 and 4.5. This leads to
simplified classical formulations as shown below.

If we assume that the physical boundary conditions can be safely replaced with the Laplace
natural boundary conditions (27) (i.e. pseudo-tractions) or with the inviscid boundary conditions,
the exact Laplace form (47) reduces to the standard Laplace form∫

�
w�

�v
�t

d�+
∫

�
w�(∇v) · v d�=

∫
�
p∇w d�−

∫
�

�∇v · ∇w d�−
∫

�t

w p̄n d� · n d� (55)

So because of Equation (25), in the standard Laplace form the internal viscous contribution on the
traction boundary disappears. In this case, the semi-implicit Laplace discretization (50) reduces to⎡

⎢⎣M − �t�

2
L �tG

D 0

⎤
⎥⎦

⎡
⎣ vn+1

pn+1

⎤
⎦

=
⎡
⎢⎣−�t

(
3

2
C(vn) − 1

2
C(vn−1)

)
+ �t�

2
Lvn + Mvn + �tF

0

⎤
⎥⎦ (56)

Observation 7
Standard Laplace formulations (like the one given in Equation (56)) can be easily recognized by
the fact that the viscous contributions come exclusively from the Laplacian operator L.

Note that Laplacian discrete operator L has been defined to be

Lv=−
∫

�
∇v · ∇w d�

it is symmetric and block-diagonal (decoupled) by velocity components. Because of this, the matrix

A = M − �t�

2
L
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appearing in projection/fractional-step methods is block-diagonal and can be decoupled in velocity
components.

8. THE VIOLATION OF OBJECTIVITY BY STANDARD LAPLACE FORMULATIONS

The boundary term (48) is the only difference between the standard Laplace form and the exact
Laplace form derived in Sections 7 and 6, respectively. In the previous section we showed that if
we use the natural boundary conditions of the Laplace form such term is not longer part of the
formulation. Note that by making use of such approximation one expects to make improvements
in the performance of the resulting algorithms (see Observation 7).

The boundary term (48) can be written in component form as

Vv =−�
∫

�t

w(∇v)T · n d�=−�
∫

�t

w

(
�vi

�x j
nie j

)
d� (57)

From this we see that the j th component involves components vi with j �= i then this term fully
couples all the components of the velocity. The above coupling is a coupling due to viscosity, i.e.
a viscous coupling. The corresponding discrete operator V then produces a coupling in velocity
components. It is not a block-diagonal operator.

In this section we will explain why it is a bad idea to simulate viscous flows with standard
Laplace formulations (such as the one given in Equation (56)).

We will show that the lack of the boundary term (48) causes the violation of the principle
of objectivity or invariance under a change of observer which is a main axiom of continuum
mechanics (see [21, 22]).

To demonstrate this, we will prove that the absence of the boundary term (48) is equivalent to
writing the Cauchy stress r (Equation (3)) without the contribution due to �(∇v)T

r̃= −pI + r̃viscous = −pI + �(∇v) (58)

and then prove that (58) is an incorrect or incomplete constitutive law: it violates the principle of
objectivity.

The demonstration that the absence of (48) is equivalent to using the constitutive law (58) is as
follows. First note that a material whose constitutive law is given by (58) still satisfies the strong
form of the N–S equations

�
�v
�t

+ �∇v · v= ∇ · r̃=−∇ p + �∇2v (59)

The only change being a slightly different traction boundary condition

r̃ · n= t̄ on �t (60)

⇓
[−pI + �(∇v)] · n= t̄ on �t (61)

Now, if we redo the steps followed in Section 6.1 with r̃ instead of r we obtain again Equation (44),
then inserting the boundary condition (61) we get back the standard Laplace form given in
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Equation (55):∫
�

w�
�v
�t

d� +
∫

�
w�(∇v) · v d�=

∫
�
p∇w d� −

∫
�

�∇v · ∇w d� +
∫

�t

wt d� · n d� (62)

This proves that the use of standard Laplace formulations is equivalent to the use of a Cauchy
stress r̃.

Now, let us show that (58) violates the principle of objectivity.
A necessary condition for a constitutive law to satisfy the principle of objectivity is that a

rigid motion should not generate viscous stresses and preserve incompressibility on the material.
Expressed mathematically this implies that under a velocity field vR corresponding to a rigid
motion we should have

r̃viscous = 0 (63)

⇓
�∇vR = 0 (64)

and

∇ · vR = 0 (65)

Mathematically the velocity field of a rigid motion is given by

vR =x× x

In component form

vR = �i jk� j xkei

Then

∇ · vR = �
�xi

(�i jk� j xk) = �i jk� j
�

�xi
xk = �i jk� j�ki = �i j i� j = 0 (66)

which proves that the incompressibility condition is preserved. On the other hand,

∇vR = �
�xl

(�i jk� j xk)eiel = �i jk� j
�

�xl
(xk)eiel = �i jk� j�kleiel

∇vR = �i jl� jeiel �= 0

(67)

In Cartesian coordinates we can write the components of ∇vR in matrix form as

[∇vR] =

⎛
⎜⎜⎝

0 −�z �y

�z 0 −�x

−�y �x 0

⎞
⎟⎟⎠ (68)

Then it follows from (67) that

r̃viscous �= 0

so the principle of objectivity is violated.
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However, if we consider the correct expression for the stress

r=−pI + rviscous =−pI + �(∇v) + �(∇v)T (69)

we get that

rviscous = �(∇vR) + �(∇vR)T = 0 (70)

Because

(∇vR)T = �
�xl

(�i jk� j xk)elei = �i jk� j�klelei = �i jl� jelei

(∇vR)T = �l j i� jeiel = −�i jl� jeiel

(71)

and then

∇vR + (∇vR)T = �i jl� jeiel − �i jl� jeiel ≡ 0

This proves then that one must use the entire tensor in order to preserve objectivity and, as a
consequence, the term (48) cannot be neglected if the main axioms of continuum mechanics are
wanted to be preserved.

8.1. An error estimation of standard Laplace formulations

Note that

(∇vR)T · n=−�i jl� j nlei =−x×n (72)

Replacing this into the expression of the neglected surface integral, we see that

Neglected term=−
∫

��

w�(∇vR)T · n d�=
∫

��

w�x×n d�= �x×
∫

��

wn d� (73)

The above expression can be used to provide a good estimation for the magnitude of the error
made when using standard Laplace formulations.

Observation 8
From (73) it is clear that in flow simulations where the flow experiences rotations, curvature
changes and twisting may be affected the most. The approximation may be valid for simulations
like flow in a straight channel.

Note also from (73) that due to the cross-product with the surface normal (. . . ×n), the neglected
term generates a force tangent to the surface of prescribed tractions. This force has the direction
x×n, and in the case of a two-dimensional flowwith an external free surface, because vR·x×n�0,
this neglected term generates a force in a direction that helps to keep the rigid motion.

9. FULLY BOUNDED DOMAINS AND CAVITY FLOWS

In the previous sections we obtained both Laplace discretizations and divergence discretizations
for general cases of flow motion. There we centred the discussion on the handling of traction
surfaces and the contribution of traction boundary integrals for flows with free surfaces.
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Now let us consider the case of flows in fully bounded domains (i.e. no free surfaces) such as
the one of the cavity flow problem [15, 23; Section 6.8].

In such cases the velocity is prescribed in the whole boundary surface � of the volume domain
� so

v= v̄ on �= �v (74)

and there are no traction boundaries

�t = 0 (75)

As a consequence the following operators become zero:

F = −
∫

�t

w p̄n d�= 0

Vv=−
∫

�t

w[�(∇v)T] · n d�= 0

Then, for the fully bounded case the Laplace discretization (i.e. Equation (50)) reduces to⎡
⎢⎣M − �t�

2
(L) �tG

D 0

⎤
⎥⎦

⎡
⎣ vn+1

pn+1

⎤
⎦=

⎡
⎢⎣−�t

(
3

2
C(vn)−1

2
C(vn−1)

)
+�t�

2
(L)vn + Mvn

0

⎤
⎥⎦ (76)

However, note that because of Equation (54) we have that

Tv �= 0 in the discrete (77)

so, for the divergence discretization (50) we can just say that⎡
⎢⎣M − �t�

2
(L + T) �tG

D 0

⎤
⎥⎦

⎡
⎣ vn+1

pn+1

⎤
⎦

=
⎡
⎢⎣−�t

(
3

2
C(vn) − 1

2
C(vn−1)

)
+ �t�

2
(L + T)vn + Mvn

0

⎤
⎥⎦ (78)

Observation 9
Note then that in the case of fully bounded domains with bounded solutions the Laplace discretiza-
tion and the standard Laplace discretization match. However, none of the Laplace discretizations
match with the divergence discretization.

The common approach in publications dealing with projection methods is to start with the
standard Laplace formulation in fully bounded domains [18, 24–29]. However, the divergence
formulation is a more accurate and general approach. Then such projections methods should be
studied from the divergence discretization perspective. At present we (the authors) do not know if
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using a divergence formulation instead of the commonly used standard Laplace formulation would
have a sensible effect on the performance characteristics of such methods, probably it will. It may
also be the case that the coupling effect of operator T will complicate the analysis.

10. LEVEL-SET METHODS USING LAPLACE FORMULATIONS
OF THE NAVIER–STOKES EQUATIONS

Level-set methods, also named pseudo-concentration methods, have been largely used to solve
flow problems with free surfaces [30]. The idea is very simple: to solve a fully bounded domain
containing two different flows, the true one, with the appropriate viscosity and density and a
pseudo-fluid with a much smaller viscosity and density. For example, for the case of a problem
involving water the second fluid will be air. Both fluids are solved in a unique fully bounded
domain with the original free surface being now inside the domain and defining the interface
between the two fluids. The position of the interface, i.e. the position of the free surface, being
determined in a Lagrangian way using an auxiliary level set or pseudo-concentration function.

Some researchers using level sets argue that the error signalled in Section 8 about the use of
standard Laplace formulations with free-surface problems disappears with this technique. They
claim that because the domain under consideration is a fully bounded domain there is no longer
an error (as discussed in Section 9). Unfortunately this is not true. We will show in this section
that the introduction of an internal discontinuity (i.e. a jump in the viscosity) results in the same
magnitude of error as in the open domains with a free surfaces.

In order to analyse the level-set method in a general way, suppose the domain is divided in two
sub-domains: �1 were the true fluid is and �2 were the pseudo-fluid is.

10.1. The divergence weak form

Taking into account the divergence form for the stress tensor from Equation (4)

∇ · r=∇ · (−pI + �∇v + �(∇v)T) (79)

and applying Green’s theorem∫
�

w∇ · [r] d� =
∫

�1

w∇ · [r1] d� +
∫

�2

w∇ · [r2] d�

= −
∫

�1

[r1] · ∇w d� −
∫

�2

[r2] · ∇w d�

+
∫

�e1

wt1 d� +
∫

�e2

wt2 d� +
∫

�1,2

w(t1 − t2) d� (80)

Where �1,2 is the boundary surface forming the interface between the two fluids, and, �e1 and
�e2 are the remaining portion of traction boundary surfaces of �1 and �2, respectively. We use
the notation r1 and r2 for the stresses, and, t1 and t2 for the surface-tractions corresponding to
fluids 1 and 2, respectively.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:639–664
DOI: 10.1002/fld



VIOLATION OF OBJECTIVITY IN LAPLACE FORMULATIONS OF THE N–S EQUATIONS 655

Considering that the pseudo-fluid does not produce any stress (r2 = t2 = 0), we conclude that
the divergence form is∫

�
w∇ · [r] d�=−

∫
�1

[r1] · ∇w d� +
∫

�e1

wt1 d� +
∫

�1,2

wt1 d� (81)

And, for the fully bounded domain of the level-set method where the surface tractions are only on
the fluid’s interface ∫

�
w∇ · [r] d�=−

∫
�1

[r1] · ∇w d� +
∫

�1,2

wt1 d� (82)

We conclude that the natural condition for the divergence form of the N–S equations remains the
zero-traction condition:

r1 · n= t1 = 0

10.2. The Laplace weak form

Taking the Laplace form of Equation (79)

∇ · r= −∇ pI + �∇2v (83)

The weak equation becomes∫
�

w∇ · [r] d� =
∫

�1

w[−∇ pI + �1∇2v] d� +
∫

�2

w[−∇ pI + �2∇2v] d�

=
∫

�1

p∇w d� −
∫

�1

�1∇v · ∇w d� +
∫

�2

p∇w d� −
∫

�2

�2∇v · ∇w d�

+
∫

�e1

w[t1 − �1(∇v)T] d� +
∫

�e2

w[t2 − �2(∇v)T] d�

+
∫

�e1

w[t1 − t2 − �1(∇v)T + �2(∇v)T] d� (84)

Again, considering the pseudo-fluid does not produce stress and that the surface tractions are only
on the fluid’s interface∫

�
w∇ · [r] d�=

∫
�1

p∇w d� −
∫

�1

�1∇v · ∇w d� +
∫

�e1

w[t1 − �1(∇v)T] d� (85)

This shows that the natural condition

[t1 − �1(∇v)T] = 0

of the Laplace form is not any more the physical condition of free surface (t1 = 0). Then level-set
methods based on Laplace formulations have exactly the same inconvenience presented previously
for standard open domains with free surface problems.

We conclude that in both methods, either the one tracking the free surface or the one using the
level-set idea to transform the problem to a bounded-domain problem, one must use the divergence

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:639–664
DOI: 10.1002/fld



656 A. LIMACHE ET AL.

form of the N–S equations. Otherwise, if a standard Laplace form is used one will have to deal
with the dangerous consequences of violating objectivity. Note that if an exact Laplace form (i.e.
a non-violating form) is used, it will be necessary to introduce additional terms on the free surface
or interface. These terms coupled the three components of the velocity and, for this reason, most
of the advantages of the Laplacian approach are lost.

11. NUMERICAL RESULTS

In order to show numerically the importance of using the divergence form of the N–S equations
instead of standard Laplace formulations, three examples will be presented. As explained before,
standard Laplace formulations are particularly wrong in the case of viscous flow with free surfaces.
Theory tells us that in the case of fully bounded domains (cavity flows) the errors should not be so
significant. We expect also that errors should decrease proportionally to the viscosity and increase
proportionally with rotational flow velocities. Since in the problems presented here we are dealing
with moving free surfaces, we chose particle finite element method (PFEM) [31] to carry out our
numerical experiments. With PFEM the free surface is tracked in a Lagrangian way and a new
triangulation is generated at each time step. The free surface is determined using the alpha-shape
concept [32]. Nevertheless, the differences in the results that we are going to show are independent
of the particular integral method used to solve the differential equations. The errors are related to
the theoretical formulation itself and not to the discretization of the problem.

11.1. Viscous flow in a spinning cylindrical container

The first example considered is the case of a spinning cylindrical container partially full with a
viscous fluid and without gravitational forces, as shown in Figures 1 and 2. Due to the centrifugal
forces, the fluid is pushed towards the outer portions of cylinder and in the steady-state it takes
the form of a cylindrical ring with an internal free surface having the form of a circular tube.

R

ω

Free
surface

Free
surface

FluidFluid

Figure 1. Side view of a cylindrical container of radius R partially full with fluid. The cylinder is rotating
with a constant angular velocity � about its axis under no gravity. The steady motion makes the fluid to

fill the outer portions of the container forming an internal free surface with a cylindrical shape.
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R

ω

Fluid

Free
Surface

Figure 2. Top view of a cylindrical container partially full with fluid. The cylinder is
rotating with a constant angular velocity � about its axis under no gravity. The spinning
motion makes the fluid to fill the outer portions of the container forming an internal free

surface with circular shape. The motion is steady.
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Figure 3. Deviation of the tangential velocity of two points inside the flow with respect to the true steady
velocity when the standard Laplace form is used.

Figure 1 shows a side view while Figure 2 shows a top view of the spinning cylinder. For steady
viscous flow, the result should be a flow turning as a rigid body. The tangent velocity along a
radius becomes perfectly lineal as well as the pressure field.

The problem was solved using the steady-state solution as initial configuration. Then if a correct
formulation is used to simulate the spinning cylinder the flow field should remain equal to the
initial configuration. It must be noted that the stationary solution to this problem is independent
of the value of viscosity (of course as long as �>0) and the corresponding velocity should be
tangential and increase linearly along the radial coordinate.

Using the divergence form of the N–S equations the resulting flow remains all the time in the
same position as in the stationary solution. Nevertheless, if the standard Laplace form is used the
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Velocity - Divergence Form Velocity - Std. Laplace Form

Figure 4. Comparison of velocity distributions for the spinning cylinder at Re= 1.

Pressure - Divergence Form Pressure - Std. Laplace Form

Figure 5. Comparison of pressure distributions for the spinning cylinder at Re= 1.

flow changes with time, it does not remain at the correct stationary initial configuration and goes
to a wrong result. See, for example, in Figure 3 how the flow tangential velocity does not remain
constant for two arbitrary points of the fluid in the spinning cylinder. We clearly see that when the
standard Laplace form is used the tangential velocity starts increasing steadily instead of remaining
constant. This result is in agreement with the fact that the missing boundary term of the standard
Laplace form produces tangential forces that accelerate the flow. We tested three cases at different
Reynolds numbers Re=VR/� =�R2/�. In Figures 4 and 5 we can see how the resulting solutions
of the two formulations clearly differ for a Reynolds number Re= 1. In Figure 6 we see how
for highly viscous motions (Re= 0.000001 and 1) the velocity matches the expected analytical
solution when the divergence form is used while, on the contrary, the velocity is not any more
lineal and departs widely from the analytical solution when the standard Laplace form is used. If
the viscosity of the flow is decreased so Re= 1000, the wrong behaviour of the standard Laplace
form is still noticeable as shown in Figure 7. Note that as we decrease the fluid viscosity, it takes
more time to see the wrong effects of the Laplace solution but they are still present.
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Divergence Form vs Standard Laplace Form
Re=0.000001 at t=5secs
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Figure 6. Comparison of the flow rotational velocities v as a function of the radial position r/R obtained
using either the divergence form or the standard Laplace form for the case of the spinning cylinder
for very viscous flows (Re= 0.000001 and 1). Note how the results corresponding to the divergence
form match the analytical solution: v =�r = Vr/R while the simulations corresponding to the standard

Laplace form separate widely from the analytical solution.

Divergence Form vs Standard Laplace Form
Re=1000 at t=10secs
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Figure 7. Comparison of the flow rotational velocities v as a function of the radial position r/R obtained
using either the divergence form or the standard Laplace form for the case of the spinning cylinder for
moderate viscous flows. After 10 s, the results corresponding to the divergence form still match well the
analytical solution: v = Vr/R. On the other hand, the simulations with the standard Laplace form steadily

and visibly deviate from the steady solution.

11.2. Container with a viscous fluid falling down

A rectangular container open on the upper side and partially filled with a viscous fluid, as shown
in Figure 8, is analysed for the case in which it is subject to gravity forces and just supported
in one of the bottom corners. The container must fall down with a rotatory motion around the
fixed corner. In the case of a highly viscous material, the fluid must turn as a rigid body with the
container. Figure 9 shows the results at different time steps for the case of a kinematic viscosity of
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Viscous
Fluid

Free
Surface

Gravity

Figure 8. A rectangular container is filled with a viscous fluid subject to
gravity g and fixed at the lower left corner.

t = 0.0secs

Divergence Form Std. Laplace Form

t = 0.3secs

t = 0.6secs

Figure 9. Numerical simulations of the rectangular container shown in Figure 8 filled with extremely
high viscosity. Due to the high values of viscosity the fluid should behave as a solid block and
fall and rotate around the fixed corner. This is what occurs when the divergence form is used. On
the contrary, if the standard Laplace form is used, the fluid remains almost horizontal forcing the

container to remain in that position too.

� = 1000. Since the viscosity is extremely high the fluid should behave almost as a solid block and
fall and rotate with the container around the fixed corner. This is what occurs when the divergence
form is used. On the contrary, if the standard Laplace form is used, the fluid completely losses its
capacity to achieve rotations and remains almost horizontal forcing the container to remain in that
position too.
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Divergence Form Std. Laplace Form

t = 1.5 secs

t = 1.0 secs

t = 0.5 secs

Figure 10. Numerical simulations of a dam break of a viscous fluid Re= 1.

11.3. Viscous dam break

The collapse of a water column representing the breaking of a dam has been largely solved in the
literature for inviscid or almost inviscid cases. The viscous case is probably not so important in
hydraulic engineering but becomes more current in other applications as the cooling of a polymer,
fluid concrete, oils, etc. Figure 10 shows the numerical results at different time steps for the standard
Laplace form and for the divergence form. The kinematic viscosity was chosen to be � = 1. From
the images of Figure 10 we can note that the shape of the falling fluid column is different. Also,
the front of the fluid moves faster for the case of the standard Laplace form than for the divergence
case. We do not have experimental results to compare with the numerical simulations but taking
into account our theoretical results we expect the simulations corresponding to the divergence form
to be closer to reality. The differences between the results of the standard Laplace form and the
results of the divergence form are at least worrisome.

12. DISCUSSION AND CONCLUSIONS

Standard Laplace discretizations are recognized by the fact that the viscous contribution comes
only from the Laplacian operator L. Since one can arrive to this type of discretization by using
classical assumptions, there is a chance that some people may be using them without noting that
they have a extremely serious defect. They violate a main axiom of continuum mechanics: the
principle of objectivity.

In [15] Donea and Huerta present pseudo-tractions as convenient forms to impose boundary
conditions. Particularly, they use them to describe formulations of the unsteady N–S equations [15,
Section 6.7]. In this article we have shown that such proposed formulations violate objectivity.
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As a consequence, pseudo-tractions (i.e. natural boundary conditions of the Laplace form) should
be avoided. Inviscid assumptions on free surface boundaries should be avoided too.

Standard Laplace discretizations are commonly used in combination with fractional-step meth-
ods [6, 33]. Fractional-step methods allow a decoupling of the pressure variable from the velocity
components. The use of an equation like (56) allows to decouple the velocity components too.
This is advantageous because instead of solving a system containing 3 ∗ NV unknown velocity
components, one would solve three smaller systems of size NV (one system per velocity compo-
nent). However, as explained in Section 9 this approach is incorrect by the violation of objectivity
in such formulations.

Violation of objectivity by standard Laplace discretizations gives another reason to prefer the
divergence approach (i.e. weak forms derived from the divergence form of the N–S equations)
over the Laplace approach. Note that the use of divergence discretizations forces the computation
of a discrete operator T which automatically produces a linkage between velocity components.

One way to remove the linkage would be to evaluate explicitly the terms associated to T. In
such case, Equation (50) would change to⎡

⎢⎣M − �t�

2
L �tG

D 0

⎤
⎥⎦

⎡
⎣ vn+1

pn+1

⎤
⎦

=
⎡
⎢⎣−�t

(
3

2
C(vn+1) − 1

2
C(vn−1)

)
+ �t�

2
(L + 2T)vn + Mvn + �tF

0

⎤
⎥⎦ (86)

Numerical simulations and convergence and stability analysis is required to see if the linkage can
be removed without loss of convergence, accuracy and performance. We doubt that this will be
possible at least for low Reynolds numbers.

Divergence discretization is the modern approach chosen by many researchers for the simulation
of incompressible viscous flows with free surfaces (see, for example, [34–39]). It is also general
and compatible with the approach used in solid mechanics. So in case of doubt. . . choose the
divergence path.
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34. Idelsohn S, Oñate E, Marti J, Celigueta M, Limache A. The particle finite element method: an efficient method
to solve CFD problems with free-surfaces and breaking waves. Proceedings of the Eccomas CFD 2006, Egmond
ann Zee, Netherlands, September 2006.
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